575 lines
18 KiB
Markdown
575 lines
18 KiB
Markdown
# 🗃️ 查詢歷史快取系統 - 功能規格計劃
|
||
|
||
**專案**: DramaLing 英語學習平台
|
||
**功能**: 查詢歷史記錄與智能快取系統
|
||
**文檔版本**: v1.0
|
||
**建立日期**: 2025-01-18
|
||
**核心概念**: 將技術快取包裝為用戶查詢歷史,提升體驗透明度
|
||
|
||
---
|
||
|
||
## 🎯 **核心設計理念**
|
||
|
||
### **從「快取機制」到「查詢歷史」**
|
||
|
||
| 技術實現 | 用戶概念 | 實際意義 |
|
||
|----------|----------|----------|
|
||
| Cache Hit | 查詢過的句子 | "您之前查詢過這個句子" |
|
||
| Cache Miss | 新句子查詢 | "正在為您分析新句子..." |
|
||
| Word Cache | 查詢過的詞彙 | "您之前查詢過這個詞彙" |
|
||
| API Call | 即時查詢 | "正在為您查詢詞彙資訊..." |
|
||
|
||
### **使用者場景**
|
||
```
|
||
場景1: 句子查詢
|
||
用戶輸入: "Hello world"
|
||
第1次: "正在分析..." (3-5秒) → 存入查詢歷史
|
||
第2次: "您之前查詢過,立即顯示" (<200ms)
|
||
|
||
場景2: 詞彙查詢
|
||
句子: "The apple"
|
||
點擊 "The": "正在查詢..." → 存入詞彙查詢歷史
|
||
新句子: "The orange"
|
||
點擊 "The": "您之前查詢過,立即顯示" → 從歷史載入
|
||
```
|
||
|
||
---
|
||
|
||
## 📋 **技術規格設計**
|
||
|
||
## 🎯 **A. 句子查詢歷史系統**
|
||
|
||
### **A1. 當前實現改造**
|
||
**現有**: `SentenceAnalysisCache` (技術導向命名)
|
||
**改為**: 保持技術實現,改變用戶訊息
|
||
|
||
#### **API 回應訊息改造**
|
||
**檔案**: `/backend/DramaLing.Api/Controllers/AIController.cs:547`
|
||
|
||
```csharp
|
||
// 當前 (技術導向)
|
||
return Ok(new {
|
||
Success = true,
|
||
Data = cachedResult,
|
||
Message = "句子分析完成(快取)", // ❌ 技術術語
|
||
Cached = true,
|
||
CacheHit = true
|
||
});
|
||
|
||
// 改為 (用戶導向)
|
||
return Ok(new {
|
||
Success = true,
|
||
Data = cachedResult,
|
||
Message = "您之前查詢過這個句子,立即為您顯示結果", // ✅ 用戶友善
|
||
FromHistory = true, // ✅ 更直觀的欄位名
|
||
QueryDate = cachedAnalysis.CreatedAt,
|
||
TimesQueried = cachedAnalysis.AccessCount
|
||
});
|
||
```
|
||
|
||
### **A2. 前端顯示改造**
|
||
**檔案**: `/frontend/app/generate/page.tsx`
|
||
|
||
```typescript
|
||
// 查詢歷史狀態顯示
|
||
{queryStatus && (
|
||
<div className={`inline-flex items-center px-4 py-2 rounded-lg text-sm font-medium ${
|
||
queryStatus.fromHistory
|
||
? 'bg-purple-100 text-purple-800'
|
||
: 'bg-blue-100 text-blue-800'
|
||
}`}>
|
||
{queryStatus.fromHistory ? (
|
||
<>
|
||
<span className="mr-2">🗃️</span>
|
||
<span>查詢歷史 (第{queryStatus.timesQueried}次)</span>
|
||
<span className="ml-2 text-xs text-purple-600">
|
||
首次查詢: {formatDate(queryStatus.queryDate)}
|
||
</span>
|
||
</>
|
||
) : (
|
||
<>
|
||
<span className="mr-2">🔍</span>
|
||
<span>新句子分析中...</span>
|
||
</>
|
||
)}
|
||
</div>
|
||
)}
|
||
```
|
||
|
||
---
|
||
|
||
## 🎯 **B. 詞彙查詢歷史系統**
|
||
|
||
### **B1. 新增詞彙查詢快取表**
|
||
```sql
|
||
-- 用戶詞彙查詢歷史表
|
||
CREATE TABLE UserVocabularyQueryHistory (
|
||
Id UNIQUEIDENTIFIER PRIMARY KEY,
|
||
UserId UNIQUEIDENTIFIER NOT NULL, -- 用戶ID (未來用戶系統)
|
||
Word NVARCHAR(100) NOT NULL, -- 查詢的詞彙
|
||
WordLowercase NVARCHAR(100) NOT NULL, -- 小寫版本 (查詢鍵)
|
||
|
||
-- 查詢結果快取
|
||
AnalysisResult NVARCHAR(MAX) NOT NULL, -- JSON 格式的分析結果
|
||
Translation NVARCHAR(200) NOT NULL, -- 快速存取的翻譯
|
||
Definition NVARCHAR(500) NOT NULL, -- 快速存取的定義
|
||
|
||
-- 查詢上下文
|
||
FirstQueriedInSentence NVARCHAR(1000), -- 首次查詢時的句子語境
|
||
LastQueriedInSentence NVARCHAR(1000), -- 最後查詢時的句子語境
|
||
|
||
-- 查詢歷史統計
|
||
FirstQueriedAt DATETIME2 NOT NULL, -- 首次查詢時間
|
||
LastQueriedAt DATETIME2 NOT NULL, -- 最後查詢時間
|
||
QueryCount INT DEFAULT 1, -- 查詢次數
|
||
|
||
-- 系統欄位
|
||
CreatedAt DATETIME2 NOT NULL,
|
||
UpdatedAt DATETIME2 NOT NULL,
|
||
|
||
-- 索引優化
|
||
INDEX IX_UserVocabularyQueryHistory_UserId_Word (UserId, WordLowercase),
|
||
INDEX IX_UserVocabularyQueryHistory_LastQueriedAt (LastQueriedAt),
|
||
|
||
-- 暫時不設定外鍵,因為用戶系統還未完全實現
|
||
-- FOREIGN KEY (UserId) REFERENCES Users(Id)
|
||
);
|
||
```
|
||
|
||
### **B2. 詞彙查詢服務重構**
|
||
**檔案**: `/backend/DramaLing.Api/Services/VocabularyQueryService.cs`
|
||
|
||
```csharp
|
||
public interface IVocabularyQueryService
|
||
{
|
||
Task<VocabularyQueryResponse> QueryWordAsync(string word, string sentence, Guid? userId = null);
|
||
Task<List<UserVocabularyQueryHistory>> GetUserQueryHistoryAsync(Guid userId, int limit = 50);
|
||
}
|
||
|
||
public class VocabularyQueryService : IVocabularyQueryService
|
||
{
|
||
private readonly DramaLingDbContext _context;
|
||
private readonly IGeminiService _geminiService;
|
||
private readonly ILogger<VocabularyQueryService> _logger;
|
||
|
||
public async Task<VocabularyQueryResponse> QueryWordAsync(string word, string sentence, Guid? userId = null)
|
||
{
|
||
var wordLower = word.ToLower();
|
||
var mockUserId = userId ?? Guid.Parse("00000000-0000-0000-0000-000000000001"); // 模擬用戶
|
||
|
||
// 1. 檢查用戶的詞彙查詢歷史
|
||
var queryHistory = await _context.UserVocabularyQueryHistory
|
||
.FirstOrDefaultAsync(h => h.UserId == mockUserId && h.WordLowercase == wordLower);
|
||
|
||
if (queryHistory != null)
|
||
{
|
||
// 更新查詢統計
|
||
queryHistory.LastQueriedAt = DateTime.UtcNow;
|
||
queryHistory.LastQueriedInSentence = sentence;
|
||
queryHistory.QueryCount++;
|
||
await _context.SaveChangesAsync();
|
||
|
||
// 返回歷史查詢結果
|
||
var historicalAnalysis = JsonSerializer.Deserialize<object>(queryHistory.AnalysisResult);
|
||
|
||
return new VocabularyQueryResponse
|
||
{
|
||
Success = true,
|
||
Data = new
|
||
{
|
||
Word = word,
|
||
Analysis = historicalAnalysis,
|
||
QueryHistory = new
|
||
{
|
||
IsFromHistory = true,
|
||
FirstQueriedAt = queryHistory.FirstQueriedAt,
|
||
QueryCount = queryHistory.QueryCount,
|
||
DaysSinceFirstQuery = (DateTime.UtcNow - queryHistory.FirstQueriedAt).Days,
|
||
FirstContext = queryHistory.FirstQueriedInSentence,
|
||
CurrentContext = sentence
|
||
}
|
||
},
|
||
Message = $"您之前查詢過 \"{word}\",這是第{queryHistory.QueryCount}次查詢"
|
||
};
|
||
}
|
||
|
||
// 2. 新詞彙查詢 - 調用 AI
|
||
var aiAnalysis = await AnalyzeWordWithAI(word, sentence);
|
||
|
||
// 3. 存入查詢歷史
|
||
var newHistory = new UserVocabularyQueryHistory
|
||
{
|
||
Id = Guid.NewGuid(),
|
||
UserId = mockUserId,
|
||
Word = word,
|
||
WordLowercase = wordLower,
|
||
AnalysisResult = JsonSerializer.Serialize(aiAnalysis),
|
||
Translation = aiAnalysis.Translation,
|
||
Definition = aiAnalysis.Definition,
|
||
FirstQueriedInSentence = sentence,
|
||
LastQueriedInSentence = sentence,
|
||
FirstQueriedAt = DateTime.UtcNow,
|
||
LastQueriedAt = DateTime.UtcNow,
|
||
QueryCount = 1,
|
||
CreatedAt = DateTime.UtcNow,
|
||
UpdatedAt = DateTime.UtcNow
|
||
};
|
||
|
||
_context.UserVocabularyQueryHistory.Add(newHistory);
|
||
await _context.SaveChangesAsync();
|
||
|
||
return new VocabularyQueryResponse
|
||
{
|
||
Success = true,
|
||
Data = new
|
||
{
|
||
Word = word,
|
||
Analysis = aiAnalysis,
|
||
QueryHistory = new
|
||
{
|
||
IsFromHistory = false,
|
||
IsNewQuery = true,
|
||
FirstQueriedAt = DateTime.UtcNow,
|
||
QueryCount = 1,
|
||
Context = sentence
|
||
}
|
||
},
|
||
Message = $"首次查詢 \"{word}\",已加入您的查詢歷史"
|
||
};
|
||
}
|
||
|
||
private async Task<object> AnalyzeWordWithAI(string word, string sentence)
|
||
{
|
||
try
|
||
{
|
||
// 🚀 這裡應該是真實的 AI 調用,不是模擬
|
||
var prompt = $@"
|
||
請分析單字 ""{word}"" 在句子 ""{sentence}"" 中的詳細資訊:
|
||
|
||
單字: {word}
|
||
語境: {sentence}
|
||
|
||
請以JSON格式回應:
|
||
{{
|
||
""word"": ""{word}"",
|
||
""translation"": ""繁體中文翻譯"",
|
||
""definition"": ""英文定義"",
|
||
""partOfSpeech"": ""詞性"",
|
||
""pronunciation"": ""IPA音標"",
|
||
""difficultyLevel"": ""CEFR等級"",
|
||
""contextMeaning"": ""在此句子中的具體含義"",
|
||
""isHighValue"": false,
|
||
""examples"": [""例句1"", ""例句2""]
|
||
}}
|
||
";
|
||
|
||
var response = await _geminiService.CallGeminiApiAsync(prompt);
|
||
return ParseVocabularyAnalysisResponse(response);
|
||
}
|
||
catch (Exception ex)
|
||
{
|
||
_logger.LogWarning(ex, "AI vocabulary analysis failed, using fallback data");
|
||
|
||
// 回退到基本資料
|
||
return new
|
||
{
|
||
word = word,
|
||
translation = $"{word} 的翻譯",
|
||
definition = $"Definition of {word}",
|
||
partOfSpeech = "unknown",
|
||
pronunciation = $"/{word}/",
|
||
difficultyLevel = "unknown",
|
||
contextMeaning = $"在句子 \"{sentence}\" 中的含義",
|
||
isHighValue = false,
|
||
examples = new string[0]
|
||
};
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
---
|
||
|
||
## 🎯 **C. API 端點重構**
|
||
|
||
### **C1. 更新現有端點**
|
||
**檔案**: `/backend/DramaLing.Api/Controllers/AIController.cs`
|
||
|
||
#### **句子分析端點保持不變**
|
||
```http
|
||
POST /api/ai/analyze-sentence
|
||
```
|
||
**只修改回應訊息,讓用戶理解是查詢歷史**
|
||
|
||
#### **詞彙查詢端點整合歷史服務**
|
||
```csharp
|
||
[HttpPost("query-word")]
|
||
[AllowAnonymous]
|
||
public async Task<ActionResult> QueryWord([FromBody] QueryWordRequest request)
|
||
{
|
||
try
|
||
{
|
||
// 使用新的查詢歷史服務
|
||
var result = await _vocabularyQueryService.QueryWordAsync(
|
||
request.Word,
|
||
request.Sentence,
|
||
userId: null // 暫時使用模擬用戶
|
||
);
|
||
|
||
return Ok(result);
|
||
}
|
||
catch (Exception ex)
|
||
{
|
||
_logger.LogError(ex, "Error in vocabulary query");
|
||
return StatusCode(500, new
|
||
{
|
||
Success = false,
|
||
Error = "詞彙查詢失敗",
|
||
Details = ex.Message
|
||
});
|
||
}
|
||
}
|
||
```
|
||
|
||
---
|
||
|
||
## 🎯 **D. 前端查詢歷史整合**
|
||
|
||
### **D1. ClickableTextV2 組件改造**
|
||
**檔案**: `/frontend/components/ClickableTextV2.tsx`
|
||
|
||
```typescript
|
||
// 修改詞彙查詢成功的處理
|
||
if (result.success && result.data?.analysis) {
|
||
// 顯示查詢歷史資訊
|
||
const queryHistory = result.data.queryHistory;
|
||
|
||
if (queryHistory.isFromHistory) {
|
||
console.log(`📚 從查詢歷史載入: ${word} (第${queryHistory.queryCount}次查詢)`);
|
||
} else {
|
||
console.log(`🔍 新詞彙查詢: ${word} (已加入查詢歷史)`);
|
||
}
|
||
|
||
// 將新的分析資料通知父組件
|
||
onNewWordAnalysis?.(word, {
|
||
...result.data.analysis,
|
||
queryHistory: queryHistory // 附帶查詢歷史資訊
|
||
});
|
||
|
||
// 顯示分析結果
|
||
setPopupPosition(position);
|
||
setSelectedWord(word);
|
||
onWordClick?.(word, result.data.analysis);
|
||
}
|
||
```
|
||
|
||
### **D2. 詞彙彈窗增加歷史資訊**
|
||
```typescript
|
||
// 在詞彙彈窗中顯示查詢歷史
|
||
function VocabularyPopup({ word, analysis, queryHistory }: Props) {
|
||
return (
|
||
<div className="vocabulary-popup bg-white border rounded-lg shadow-lg p-4 w-80">
|
||
{/* 詞彙基本資訊 */}
|
||
<div className="word-basic-info mb-3">
|
||
<h3 className="text-lg font-bold">{word}</h3>
|
||
<p className="text-gray-600">{analysis.pronunciation}</p>
|
||
<p className="text-blue-600 font-medium">{analysis.translation}</p>
|
||
<p className="text-gray-700 text-sm mt-1">{analysis.definition}</p>
|
||
</div>
|
||
|
||
{/* 查詢歷史資訊 */}
|
||
{queryHistory && (
|
||
<div className="query-history bg-gray-50 p-3 rounded-lg">
|
||
<h4 className="font-semibold text-xs text-gray-700 mb-2 flex items-center">
|
||
<span className="mr-1">🗃️</span>
|
||
查詢歷史
|
||
</h4>
|
||
|
||
{queryHistory.isFromHistory ? (
|
||
<div className="text-xs text-gray-600 space-y-1">
|
||
<div className="flex justify-between">
|
||
<span>查詢次數:</span>
|
||
<span className="font-medium">{queryHistory.queryCount} 次</span>
|
||
</div>
|
||
<div className="flex justify-between">
|
||
<span>首次查詢:</span>
|
||
<span className="font-medium">{formatDate(queryHistory.firstQueriedAt)}</span>
|
||
</div>
|
||
{queryHistory.firstContext !== queryHistory.currentContext && (
|
||
<div className="mt-2 p-2 bg-blue-50 rounded text-xs">
|
||
<p className="text-blue-700">
|
||
<strong>首次語境:</strong> {queryHistory.firstContext}
|
||
</p>
|
||
<p className="text-blue-700 mt-1">
|
||
<strong>當前語境:</strong> {queryHistory.currentContext}
|
||
</p>
|
||
</div>
|
||
)}
|
||
</div>
|
||
) : (
|
||
<div className="text-xs text-green-600">
|
||
✨ 首次查詢,已加入您的查詢歷史
|
||
</div>
|
||
)}
|
||
</div>
|
||
)}
|
||
</div>
|
||
);
|
||
}
|
||
```
|
||
|
||
---
|
||
|
||
## 🎯 **E. 用戶介面語言優化**
|
||
|
||
### **E1. 訊息文案改造**
|
||
|
||
| 情況 | 技術訊息 | 用戶友善訊息 |
|
||
|------|----------|--------------|
|
||
| 快取命中 | "句子分析完成(快取)" | "您之前查詢過這個句子,立即為您顯示結果" |
|
||
| 新查詢 | "AI句子分析完成" | "新句子分析完成,已加入您的查詢歷史" |
|
||
| 詞彙快取 | "高價值詞彙查詢完成(免費)" | "您之前查詢過這個詞彙 (第N次查詢)" |
|
||
| 詞彙新查詢 | "低價值詞彙查詢完成" | "首次查詢此詞彙,已加入查詢歷史" |
|
||
|
||
### **E2. 載入狀態文案**
|
||
```typescript
|
||
// 分析中的狀態提示
|
||
const getLoadingMessage = (type: 'sentence' | 'vocabulary', isNew: boolean) => {
|
||
if (type === 'sentence') {
|
||
return isNew
|
||
? "🔍 正在分析新句子,約需 3-5 秒..."
|
||
: "📚 從查詢歷史載入...";
|
||
} else {
|
||
return isNew
|
||
? "🤖 正在查詢詞彙資訊..."
|
||
: "🗃️ 從查詢歷史載入...";
|
||
}
|
||
};
|
||
```
|
||
|
||
---
|
||
|
||
## 🛠️ **實施計劃**
|
||
|
||
### **📋 Phase 1: 後端查詢歷史服務 (1-2天)**
|
||
|
||
#### **1.1 建立詞彙查詢歷史表**
|
||
```bash
|
||
# 建立 Entity Framework 遷移
|
||
dotnet ef migrations add AddUserVocabularyQueryHistory
|
||
dotnet ef database update
|
||
```
|
||
|
||
#### **1.2 建立查詢歷史服務**
|
||
- 新增 `VocabularyQueryService.cs`
|
||
- 實現真實的 AI 詞彙查詢 (替換模擬)
|
||
- 整合查詢歷史記錄功能
|
||
|
||
#### **1.3 修改現有 API 回應訊息**
|
||
- 將技術術語改為用戶友善語言
|
||
- 新增查詢歷史相關欄位
|
||
- 保持 API 結構相容性
|
||
|
||
### **📋 Phase 2: 前端查詢歷史整合 (2-3天)**
|
||
|
||
#### **2.1 更新 ClickableTextV2 組件**
|
||
- 整合查詢歷史資訊顯示
|
||
- 優化詞彙彈窗包含歷史資訊
|
||
- 改善視覺提示系統
|
||
|
||
#### **2.2 修改 generate 頁面**
|
||
- 更新查詢狀態顯示
|
||
- 改善載入狀態文案
|
||
- 新增查詢歷史統計
|
||
|
||
#### **2.3 訊息文案全面優化**
|
||
- 替換所有技術術語
|
||
- 採用用戶友善的描述
|
||
- 增加情境化的提示
|
||
|
||
### **📋 Phase 3: 查詢歷史頁面 (3-4天)**
|
||
|
||
#### **3.1 建立查詢歷史頁面**
|
||
```typescript
|
||
// 新頁面: /frontend/app/query-history/page.tsx
|
||
- 顯示所有查詢過的句子
|
||
- 顯示所有查詢過的詞彙
|
||
- 提供搜尋和篩選功能
|
||
- 支援重新查詢功能
|
||
```
|
||
|
||
#### **3.2 導航整合**
|
||
- 在主導航中新增「查詢歷史」
|
||
- 在 generate 頁面新增快速連結
|
||
- 在詞彙彈窗中新增「查看完整歷史」
|
||
|
||
---
|
||
|
||
## 📊 **與現有快取系統的關係**
|
||
|
||
### **保持底層技術優勢**
|
||
- ✅ **效能優化**: 繼續享受快取帶來的速度提升
|
||
- ✅ **成本控制**: 避免重複的 AI API 調用
|
||
- ✅ **系統穩定性**: 保持現有的錯誤處理機制
|
||
|
||
### **改善用戶認知**
|
||
- 🔄 **概念轉換**: 從「快取」到「查詢歷史」
|
||
- 📊 **透明化**: 讓用戶了解系統行為
|
||
- 🎯 **價值感知**: 用戶看到查詢的累積價值
|
||
|
||
### **技術實現不變,體驗大幅提升**
|
||
```
|
||
底層: 仍然是高效的快取機制
|
||
表層: 包裝為有意義的查詢歷史體驗
|
||
結果: 技術效益 + 用戶體驗雙贏
|
||
```
|
||
|
||
---
|
||
|
||
## 🎯 **預期效果**
|
||
|
||
### **用戶體驗轉變**
|
||
- **舊**: "為什麼這個查詢這麼快?"
|
||
- **新**: "我之前查詢過這個詞彙,這是第3次遇到"
|
||
|
||
### **系統感知轉變**
|
||
- **舊**: 神秘的黑盒子系統
|
||
- **新**: 透明的查詢歷史助手
|
||
|
||
### **價值感知轉變**
|
||
- **舊**: 一次性工具
|
||
- **新**: 個人化查詢資料庫
|
||
|
||
## 📋 **成功指標**
|
||
|
||
### **定量指標**
|
||
- **歷史查看率**: >60% 用戶注意到查詢歷史資訊
|
||
- **重複查詢滿意度**: >80% 用戶對快速載入感到滿意
|
||
- **功能理解度**: >90% 用戶理解為什麼有些查詢很快
|
||
|
||
### **定性指標**
|
||
- **透明感**: 用戶明白系統行為邏輯
|
||
- **積累感**: 用戶感受到查詢的累積價值
|
||
- **信任感**: 用戶信任系統會記住他們的查詢
|
||
|
||
---
|
||
|
||
**© 2025 DramaLing Development Team**
|
||
**設計理念**: 技術服務於用戶體驗,快取包裝為查詢歷史
|
||
**核心價值**: 讓用戶感受到每次查詢的累積意義
|
||
|
||
|
||
> 我覺得快取機制不太貼切,\
|
||
具體應該改成歷史紀錄的概念\
|
||
使用者查完某個原始例句後\
|
||
就會存成紀錄\
|
||
如果在查詢非高價值的詞彙,因為還沒有紀錄所以就會再去問ad\
|
||
然後再存到紀錄中\\
|
||
\
|
||
\
|
||
這不是學習歷史\
|
||
使用者也沒有儲存詞彙\
|
||
那只是查詢的歷史而已\
|
||
\
|
||
請你設計這個功能\
|
||
寫成功能規格計劃再根目錄 |